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Summary. It has been shown in an earlier paper that the slow transient decrease in conduc- 
tance, sometimes referred to as "creep", obtained with small-to-medium hyperpolarizing 
current or voltage pulses is due to K-- transport number differences across the walls of the trans- 
verse tubular system. Using the same basic numerical analysis and the parameters already 
obtained experimentally in the previous paper for frog skeletal muscle in a sulphate Ringer's 
solution, this paper predicts the equivalent membrane capacitance and dynamic resistance due 
to transport number effects for very low amplitude and low frequency sinusoidal currents from 
the phase lag of the voltage response behind the current. Such sinusoidal currents per se give 
rise to an equivalent capacitance which increased from less than 1 gF. cm -2 at 10 Hz to 
about 16 gF-cm -z at 0.01 Hz and to an equivalent dynamic membrane resistance which 
increases from its instantaneous slope resistance value of ll.7kf~cm 2 at 10Hz to about 
16kf~cm 2 at 0.01 Hz. Similar small sinusoidal components of current superimposed on 
depolarizing and hyperpolarizing pulses (25-45 mV) give rise to even greater "capacitances" 
at low frequencies (e.g., 24-28 gF- cm -2 at 0.01 Hz). The response due to large sinusoidal 
currents was also investigated. These transport number effects help to explain the small 
discrepancies obtained by some workers between experimental and predicted values of 
skeletal muscle fiber impedances measured in the 1-10 Hz range and would seem to be critical 
for the interpretation of any skeletal muscle fiber impedance studies done at frequencies less 
than 1 Hz. 

I m p e d a n c e  analysis  can p rov i de  cons ide rab le  i n fo rma t ion  regard ing  

the electrical  charac te r i s t ics  of  a pa r t i cu la r  system. Indeed  for b io logica l  

cells it can  even s o m e t i m e s  give i m p o r t a n t  i n f o r m a t i o n  concern ing  the 

s t ruc ture  and  charac te r i s t ics  of  the cell m e m b r a n e  itself (e.g., Cos t e r  & 

Smith,  1974a, b). Thus  it is i m p o r t a n t  to d is t inguish  how m u c h  of the 

i m p e d a n c e  charac te r i s t ics  are due to the cell m e m b r a n e  itself and  h o w  

m u c h  are due to the g e o m e t r y  of the m e m b r a n e  and  phys i co -chemica l  

effects in the so lu t ions  ad jacen t  to it. 

I t  has been  k n o w n  for a long t ime (Schaefer,  Scho lmer ich  & Haass ,  

1939; Ka tz ,  1949) tha t  when  hype rpo l a r i z i ng  cur ren ts  are appl ied  be tween  
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Fig. l. (A) A diagram illustrating current flow between the transverse tubular system (TTS) 
and the sarcoplasm of a muscle fiber and the effect of transport number differences. At a 
particular point current i flows radially down the tubules. Over a small incremental distance 
part of the current, di, crosses the tubular membrane leaving the remainder, i -d i ,  to flow 
radially beyond that increment. The relative fractions of current carried by each ion (given 
by their transport numbers) is indicated by the length of the appropriate arrows and is shown 
for a hyperpolarizing current. In particular, it should be noticed that very little of the current 
in the tubular lumen is carried by K § whereas across the tubular wall most of the current is 
carried by K +. This will cause a loss of K + from the tubular lumen, electroneutrality being 
automatically conserved by appropriate changes that also take place h~ SO2 and Na + con- 
centrations. (B) A schematic diagram of a longitudinal cross-section of a muscle fiber showing 
the current distribution between the surface membrane, ISM, and the walls of the equivalent 
TTS disc, IK, at the onset of a hyperpolarizing current pulse. The length of the arrows are 
intended to be somewhat proportional to the magnitude of the current density. The potential 
of the sarcoplasm (V= 1/o) is measured with respect to the external solution (V=0). (C) A 
diagram showing the current density crossing the walls of the equivalent TTS disc as a function 
of radial distance r from the center of the fiber (r=0) to its circumference (r= a) at the onset 
of a hyperpolarizing current pulse. (D) A diagram showing the initial K + concentration 
profile through the lumen of the TTS and beyond into the external solution (where r<  - a ,  

r>a)  

the  ins ide a n d  ou t s ide  o f  a musc l e  fiber the re  are slow t i m e - d e p e n d e n t  

c h a n g e s  in the r e c o r d e d  vo l t age  c o r r e s p o n d i n g  to a dec rease  in the  m e a -  

sured  c o n d u c t a n c e  o f  t h a t  fiber. It  was  o r ig ina l ly  sugges t ed  ( A d r i a n  & 

F r e y g a n g ,  1962) tha t  this c o u l d  be due  to  t r a n s p o r t  n u m b e r  effects in the  
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transverse tubular system of the muscle fiber, resulting in a depletion of 
K + within the tubules, but objections to this hypothesis were later raised 
(Adrian, Chandler & Hodgkin, 1970b). Obviously, even though it is open 
to the external solution (Huxley, 1964; Page, 1964; Endo, 1966), the 
transverse tubular system must behave as a very effective unstirred region. 
It is therefore to be expected (e.g., Dewhurst, 1960; Barry & Hope, 1969a; 
Wedner & Diamond, 1969) that if there are differences in transport num- 
bers between a membrane and adjacent solutions that there should be 
depletion or enhancement of salt in the unstirred layers or regions adjacent 
to the membrane, the local concentration changes being mainly balanced 
by diffusion. This has been experimentally verified in planar wall segments 
and cylindrical membranes of giant algal cells (Barry & Hope, 1969a, b). 
It would therefore also be expected that, since there are differences in 
ionic transport numbers between the tubular membrane and the lumen 
of the transverse tubular system (TTS) as indicated in Fig. 1 A (see also 
Fig. 1 B, C and D), there should be local changes in K + concentration 
there. In addition Almers (1972 a, b) carried out a detailed and very elegant 
experimental investigation of these slow conductance changes and success- 
fully met the objections against the hypothesis of K + depletion within the 
TTS of skeletal muscle fibers. 

This  decrease in the tubular K § concentration (Fig. 2 C) must result 
in a concentration gradient in the opposite direction to the applied voltage 
and hence a transient reduction in the K § current at a particular point 
(see Fig. 2A and B). In the case of both constant voltage and constant 
current pulses, there should be a predicted drop in the overall current 
going through the TTS, the current density being minimal at the center of 
the fibers. As indicated qualitatively in Fig. 2B and C this drop in the 
tubular current should be approximately compensated for by an increase 
in the current crossing the surface membrane of the fiber. For both constant 
voltage and constant current pulses these effects correspond to a significant 
transient decrease [e.g., 50~o; for further details see Barry &Adrian, 
1973 (hitherto referred to as Paper 1); see also Fig. 3] in the effective total 
conductance of the fiber (time constant 300-600 msec). 

Fig. 3 A and B shows the agreement between the theoretically predicted 
and the experimental curves for both constant voltage and constant 
current pulses (modification of Figs. 7 and 8 in Paper 1). The divergence 
between the predicted and observed voltage traces at the turn-off of the 
constant current pulse is discussed in Paper 1. It should be emphasized 
that there was no arbitrary fitting of parameters. The tubular parameters 
were those obtained or suggested elsewhere in the literature, though in 
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Fig. 2. (A) A schematic diagram of a longitudinal cross-section of a muscle fiber showing the 
computed current distribution between the surface membrane, IsM, and the walls of the 
equivalent TTS disc, IK, towards the end of a 2 sec rectangular hyperpolarizing current 
pulse. The length of the arrows are again intended to be somewhat proportional to the magni- 
tude of the current density. This figure should be compared with Fig. lB. It can be seen that 
because of K + depletion (see Fig. 2 C) maximal at the center of the fiber, where diffusion is 
least effective, the driving force on K § is reduced towards the center of the fiber. Hence the 
current density is redistributed from the center to the circumference of the fiber and also 
across the surface membrane. This means that more current is crossing a smaller area of the 
fiber corresponding to an increase in overall membrane resistance. (B) A diagram showing 
the approximate magnitude of the computed current density crossing the walls of the equiv- 
alent TTS disc as a function of radial distance r from the center of the fiber to its circumference 
(r=a) towards the end ofa 2 sec pulse. This figure should be compared to Fig. 1 C. (C) A dia- 
gram showing the approximate computed K + concentration profile through the lumen of 
the TTS and beyond into the external solution (where r < -  a, r>  a). The sudden drop in 
concentration at - a  and a arises because of the small access resistance into the TTS considered 

in the analysis. This figure should be compared with Fig. 1D 
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Fig. 3. (A) and (B) are a modified composite of Figs. 7 and 8 of Paper I and are presented here 
for convenience to show a comparison of enlargements of experimental records of membrane 
current and membrane voltage for the same frog sartorius muscle fiber together with the 
theoretical curve (dotted line) computed from a numerical analysis of transport number 
effects. In each case they are the average of 8 pulses and the membrane current, i,,,, and mem- 
brane voltage, V,,, were recorded as V 2 - V~ and V z in a 3-electrode set up. For clarity (except 
for the voltage trace of (A)) only the center of the experimental traces has been drawn in. 
For some further details see below. However, for full details see Paper 1. (A) Experimental 
membrane current, ira, (full curve) resulting from a 2 sec rectangular hyperpolarizing voltage 
pulse (Vm) and the theoretically predicted membrane current (dotted line), i~(0) is the extra- 
polated value of the theoretical membrane current at the beginning of the pulse (neglecting 
the capacity transient). (B) Experimental membrane voltage, Vm, (full curve) resulting from a 
2 sec rectangular hyperpolarizing current pulse (i,,) and the theoretically predicted membrane 
voltage (dotted line). V~ (0) is the extrapolated value of the theoretical membrane voltage at 

the beginning of the pulse (neglecting the capacity transient) 
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some cases the precise magnitude of the values was open to some debate 
(see Paper I) and the electrical parameters were those measured experi- 
mentally for that particular fiber. In fact, since Paper I had been published, 
more recent measurements by MoNey and Eisenberg (1975) have con- 
firmed the value of one of the most critical tubular parameters 1 - t h e  
fraction of fiber volume occupied by transverse tubules. They found this 
to be 0.0032, as compared with the figure of 0.003 (Peachey, 1965) used 
in Paper 1 and in this present paper. One further point worth commenting 
on concerns the localization of anomalous rectification (i.e., inward recti- 
fication of K § ions, e.g., Adrian & Freygang, 1962). Since earlier evidence 
had indicated that there is anomalous rectification in both the surface and 
tubular membranes of skeletal muscle fibers (Eisenberg&Gage, 1969), 
an in Paper 1, the rectification parameters were considered to be the same 
for both the surface and tubular membranes. In additional defence of 
such on assumption is (1) the good fit obtained in Paper 1, particularly 
for the on-phase of rectangular hyperpolarizing pulses hence validating 
quantitative impedance predictions for hyperpolarizing pulses, and (2) 
the fact that rectification is only a secondary effect, certainly as far as 
qualitative predictions are concerned (e.g., compare the two curves in 
Figs. 9 and 10). 

Now it has already been shown (Segal, 1967; J. Smith, manuscript 
in preparation) under different circumstances that unstirred-layer transport 
number effects in membranes give rise to very large apparent capacitance 
effects at very low frequencies (<  1 Hz). In addition Valdiosera, Clausen 
and Eisenberg (1974b) have shown that there is a discrepancy between 
the impedance measured at very low frequencies (1-10 Hz) and that 
predicted from the equivalent electrical circuits of the muscle fibers alone, 
the discrepancy being equivalent to a greater negative phase lag (a greater 
equivalent capacitance) than that expected from the electrical circuit 
analysis alone. 

It therefore seemed particularly useful to take the data of Paper 1 for 
frog muscle fibers where the predictions under rectangular hyperpolarizing 
current and voltage pulses had been so well fitted by the transport number 
model and use the numerical analysis appropriately modified to predict 
the voltage response for a low frequency sinusoidal current input. An 
impedance analysis was then undertaken in the low frequency range from 
0.01-10.0 Hz and it was found that below 1 Hz there was a very significant 

1 A 50 ~'/o divergence in the volume-to-surface ratio of the tubules between the two sets of 
data was not relevant to this present analysis since G~v had been directly determined from 
R~ (see Table 1; determined in Paper I using Eqs. (7), (10) and (11) of that paper). 
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increase in the negative phase lag, that corresponded to a large equivalent 
capacitance. A preliminary report of some of the conclusions of this 
analysis has been published previously (Barry, 1976). 

Methods and Details of Numerical Analysis 

The experimental membrane parameters used were those that had been obtained by the 
three-electrode technique on sartorius muscle fibers of Rana temporaria and which were 
given in Paper I. They corresponded to the average parameters for a number of fibers (see 
Tables 2 and 3 of Paper 1) and were referred to as model fiber parameters in that paper. These 
average model fiber parameters, together with the tubular parameters that had been used in 
that paper, are outlined in Table 1 and corresponded to measurements carried out at a 
temperature of 20+0.5~ in a sulphate solution with the following ionic composition in 
mmole per liter: K +, 2.5; Na +, 190; Ca 2§ 9; HPO~-, 1.08; H2PO 2, 0.43; SO42-, 104; with 
the addition of TTX at a concentration of 3.2 x 10 -6 molar (10-6 g . m1-1) to block action 
potentials. 

The numerical techniques were essentially the same as those outlined in Paper I for 
constant current pulses. In other words they involved dividing the fiber up into 20 concentric 
rings of equal radial thickness and the use of numerical difference equations similar to those 
given in the mathematical analysis of that paper and derived in a later paper (Barry, in prepara- 
tion). The models did not include any real capacitative effects, since, apart from the additional 
considerable complications that they would add to the analysis, their effects would be small 
below 2 Hz and negligible below 1 Hz, relative to the transport number effects. In addition 
this would help to differentiate the effects outlined in this paper from real capacitative effects. 
At higher frequencies this could introduce some error since the real capacitative current would 
not have a significant transport number effect, particularly as far as K § ions are concerned. 
In fact for a real capacitance of about 6 gF. cm -2 (Adrian, Chandler & Hodgkin, 1969) and 
a membrane resistance of about 6.6 k~q- cm 2, using (1 +(co ~)2) ~, as a measure of the fraction 
of ionic current going through the membrane resistance, at 0.5 Hz more than 99 % of the 
membrane current would be ionic, at 1 Hz the ionic fraction would be about 97 % at 3 Hz 
it would still be 80 %, although at 10 Hz it will have dropped to about 37 %. This means that 
at 1 Hz transport number effects are overestimated by about 3 % and at 3 Hz by about 20 %. 
Since the transport number effects only really become significant at less than 1 Hz and are 
very small at 3 Hz, the exclusion of real capacitative effects in the analysis is not, therefore, 
a serious limitation. 

The Fortran IV language (McCracken, 1965) was used, and the time after the onset of 
the pulse was incremented in steps, At. However, now at the beginning of each time step, after 
time t, the total current I, was calculated from the expression 

I = I R + A I  p sin cot (1) 

where AIp is the peak value of the sinusoidal component of current used (either 0.0l or 
2.25 gA-cm -2) I R is the constant rectangular component of current, that generally started 
long (~ 10-12 sec) before the sinusoidal component started, and ~o was the radial frequency 
in radian per sec ( = 2 n f  where f is in Hz). The membrane current was then computed, and 
using a fourth-order Runge-Kutta routine (Ralston, 1965) the change in concentration and 
hence the new concentration in each of the 20 rings was computed at the later time t+At. 
The actual Runge-Kutta equations used were Eqs. (72)-(74) of Paper 1. There was, however, 
a significant modification to the current-finding subroutine. In Paper I it had been found 
that if a reasonably good trial solution of the tubular current was used and then a fraction 
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(1/7) of the excess current remaining at the central ring was subtracted from it that there was a 
rapid convergence of the trial current to its correct value. Whilst this converged well for the 
conditions in Paper I, it was found that for other conditions or data, and in particular for a 
sine-wave current input, that it no longer converged. In addition the iterative procedure used 
for correcting changes in conductance with voltage would not readily converge when the 
voltage differed significantly from the value at which the conductance was experimentally 
measured. The first problem, which only arose with clamped (constant or sinusoidal) current 
pulses, was overcome by using a Newton-Raphson procedure (e.g., Ralston, 1965, p. 332) 
whereby the new correction to the trial current 6 I,,+, is related to the old correction 6 I, by 

f(I,. ,).6I, 
61,+1 f(i,,)_f(i,+l). (2) 

Where f(I.) is the excess current at the central ring for trial current, Is, and f(I.+l) is the 
excess current for trial current I.+l(=I.+SIn), Hence the new value of the trial current 
becomes: 

I,+2-=I,+1+~5I,+1. (3) 

In addition to converging under all conditions tested this also proved to be in all cases much 
faster at converging than the fractional method used in Paper 1.2 In contrast to Paper 1 the 
maximum error of this current 61,/I, had to be decreased to <10 10 for both the small 
0.01 gA sinusoidal current computations and the larger 2.25 gA sinusoidal current computa- 
tions. 3 

The second problem, for correcting for changes in conductance with voltage due to 
anomalous rectification, was overcome by using Newton's method of solution of equations 
(e.g., Sokolnikoff& Redheffer, 1958, pp. 684-5). 

Having chosen a trial value of 10 for the tubular current, the value of the membrane 
potential, Vo, was estimated from the corrected surface membrane resistance using the same 
equation as used before for the analysis in Paper I, i.e., 

(I  - Io) x Rsm 
vo- (4 )  

G(~) 

where I is the total current, Rsm is the resistance of the surface membrane at a p.d. of - 15.0 mV 
and G the factor used to compensate for changes in conductance with voltage is given by 

G(Vo)=gl+g2 Vo+g3 V2+g~ Vo 3. (5) 

Instead of the very simple iterative procedure previously used, Newton's method was used 
as follows to solve: 

F(Vo)=(I ~ )Rs" Vo=O (6) 
t o) 
V(Vo) 

V,+l = V , - - -  (7) 
F'(Vo) 

2 In contrast, for clamped voltage pulses the fractional method was always reliable and proved 
to be slightly faster than the Newton-Raphson technique (in this case the fraction represented 
all of the excess current). 
3 In a few instances during the larger sinusoidal computations, the error had to be temporally 
increased to < 10-7-10-9 during that part of the cycle in which the total membrane current 
approached zero. 



Low Frequency Impedance of Muscle 391 

where V, represents the n 'h trial solution for V o and F'(V,) represents the derivative of F(V,), 
the solution being considered to have been reached when 

F(V,)/V,<10 l0 for AIp=0.01ktA.cm -2 

and for AIp=2.25 gA. cm -2. 
As before (see Paper I) there should be a maximum bound on the time step for the given 

number of rings (20) for stability of the procedure. However, in contrast to Paper I, there was 
some limited varying of the time step throughout a particular computation to increase 
efficiency and still maintain accuracy. For the first 2 sec of the constant rectangular current 
pre-pulses (time constant ~600-700msec) At=0.001, whereas for the remainder of the 
rectangular pre-pulse A t = 0.005. During most of the sinusoidal parts of the pulse, longer time 
steps (e.g., d t=0.005 for frequencies between 0.01-1.0Hz, and A t=0.001 and 0.0005 for 
frequencies of 5 and 10 Hz, respectively) were used. On the other hand, in order to accurately 
measure the time lag of the voltage behind the current, the time step was decreased by a 
factor of 5, 10 or 50 times for those parts of the cycle between the critical peak and zero points 
of the sinusoidal component of the current and the corresponding peak and zero points of 
the sinusoidal component of the voltage. 

Using a CDC 6600 computer (with its 15 decimal digit single precision) the modified 
program was rather faster than before and, whether calculating a rectangular or sinusoidal 
current pulse, at a fixed time step A t=0.00l, took about 200 sec of computing time for a 
pulse of 4 sec duration. For the very low frequency curves computing times could still be very 
considerable. However, now using the variable time step method outlined above, a typical 
200 sec 2 cycle 0.01 Hz pulse decreased in time of computation from about 9000 sec to under 
2000 sec. A comparison of runs at 0.01 Hz and 0.1 Hz by the variable and fixed time step 
methods (the latter being at the smallest time step throughout to check the accuracy of the 
variable time step method) gave agreement between time lags to within 1 part in 290 and 
1 part in 245, respectively, and agreement between peak voltages to better than 2 parts in 104. 

Results 

As a l r e a d y  i nd i ca t ed  the  c a l c u l a t i ons  were  b a s e d  on  the  m o d e l  musc l e  

f iber  p a r a m e t e r s  o u t l i n e d  in T a b l e  1. T h r e e  sets o f  c o m p u t a t i o n s  were  

done .  In  each  case the  d e p e n d e n c e  o f  c o n d u c t a n c e  on  vol tage ,  due  to  

a n o m a l o u s  rec t i f ica t ion ,  was  t aken  in to  a c c o u n t .  This  r e l a t i onsh ip  b e t w e e n  

the  c o n d u c t a n c e  f ac to r  (G) a nd  the vo l t age  (i.e., the c h a n g e  in m e m b r a n e  

p o t e n t i a l  due  to the  app l i ed  cu r ren t )  (V) was  t aken  to be as fo l lows (see 
T a b l e  1) 

w h e r e  

G = g l + g 2 V * + g 3 V * 2 + g 4 V * 3  (8) 

R T  
V* = V - - - -  In [ /< ] / I -K]o  

F 
(9) 

whe re  [K]o is the init ial  c o n c e n t r a t i o n  o f  p o t a s s i u m  in the t r ansve r se  

t u b u l a r  s y s t e m  a n d  is a lso the  bu lk  s o l u t i o n  c o n c e n t r a t i o n  and  w h e r e  [ K ]  
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Table 1. Typical frog muscle model fiber parameters used for computing impedance data 
(see Paper I for further details) 

Conductance of tubular lumen, GL = 10- 2 ~-~ 1 . cm- 1 
The fraction of fiber volume occupied by tubules a, p = 0.0030 (with an additional 0.001 for the 
volume of the longitudinal tubules). 
TTS network factor ~, cr =0.5. 
Fiber radius, a = 51 gm. 
Electrical access resistance of the TTS, r~ = 100 ~cm 2. 
Concentration of K + in the TTS, CK=2.5 m u  x liter -~. 
Effective radial conductance of the lumen of the TTS per unit volume of fiber, 
GL = 1.5 X 10 - s  f~ - i .  cm-1. 
Tubular  fraction of conductance, fT = 0.66. 
Diffusion coefficient of K + in the tubular lumen, DK= 1.6 x 10 _5 cm z. sec -1. 

Conductance parameters that vary with the driving force across the membrane to account for 
anomalous rectification (see Fig. 5 of Paper 1 based on data of Adrian & Freygang, 1962). 

gl = 0.559642 gz = - 25.5904 g3 = 322.869 g4 = 4783.23 

Where the conductance factor 

G(V)=gl+g 2. V*+g  3. V*2+g4 �9 V .3 

with V* in volts and 
RT 

V* = V - - ~ -  In [K]/[K]o 

where V is the change in membrane p.d, across the tubular walls; R, T, F are the gas constant, 
Temperature in ~ and the Faraday; [K]o and [K] are the initial and later K § concentrations 
within the TTS. 
Rsm = 10.41 kf~cm 2 (at - 15.0 mV hyperpolarizing), = 34.68 kf~cm 2 (at 0.0 mV). 

Gw=0.040 f~- t .  cm 3 (at - 15.0 mV hyperpolarizing), =0.0224 f2 -1 cm -3 (at 0.0 mV). 

Chord (Rm) and slope resistances (dV/dl) at onset and termination of long (10-12 sec) constant 
current pulses of magnitude 2.25 gA. cm-2. 

R,~ at onset of hyperpolarizing pulse (V= - 14.95 mV) = 6.64 kf~cm z 
Rm at end of hyperpolarizing pulse (V= -21.88 mV) 
dV/dI at end of hyperpolarizing pulse 
R,, at onset of depolarizing pulse (V= + 40.42 mV) 
Rm at end of depolarizing pulse (V= + 45.64 mV) 
dV/dI at end of depolarizing pulse 
Slope resistance (dV/dI) at the origin (V= 0.0) 

= 9.72 kf~cm z 
= 4.67 kf~cm 2 
= 17.96 kf*cm 2 
= 20.29 kflcm z 
= 5.19 kf~cm 2 
= 11.72 k~cm 2 

a In practice the effects of the longitudinal tubule volume was taken into account (see Paper I) 
by increasing p to 0.0040 and decreasing a to 0.375 so that ~p was still 1.5 x 10 -a. 

is t h e  t u b u l a r  c o n c e n t r a t i o n  a t  a n y  l a t e r  t i m e  (t). F o r  a c a l c u l a t i o n  of  t h e  

c o n d u c t a n c e  o f  t h e  s u r f a c e  m e m b r a n e ,  V* is t a k e n  to  b e  e q u a l  to  V 

I n  t h e  f i rs t  t w o  sets  o f  c o m p u t a t i o n s  o n l y  a s m a l l  s i n u s o i d a l  c o m p o n e n t  

o f  c u r r e n t  ( p e a k  a m p l i t u d e  0.01 g A .  c m -  2) w a s  u s e d .  T h e  s m a l l  a m p l i t u d e  
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meant that the membrane conductance remained effectively constant and 
that there was minimal distortion of the sinusoidal nature of the voltage 
waveform. In fact the voltage was equally shifted in phase at each point 
throughout the cycle (cf the maximum differences in time lags given in 
Tables 2 and 3), and thus it is quite valid to calculate an equivalent capaci- 
tance and dynamic resistance from these time lags. 

In the second set (B) long 2.25 ~tA. cm -2 rectangular hyperpolarizing 
and depolarizing currents were used with the small sinusoidal component 
superimposed after the initial transient response to the rectangular 
component had settled down (the time constant for the transport number 
effects was 0.8 sec, and 10-12 sec of this pre-pulse was allowed before the 
sinusoidal component was started; cp. Fig. 7) in order to compute the 
equivalent capacitance during such hyperpolarizing and depolarizing 
pulses. 

In the third set of computations (C) a very large sinusoidal current 
(amplitude 2.25 gA. cm-2) with no dc component was used. There was, 
however, now considerable distortion of the voltage waveform from a sine 
wave, as a result of anomalous rectification. 

In each case the range of frequencies investigated was from 0.01 to 
10.0 Hz. The current input always started from zero with the hyper- 
polarizing half-cycle and the analysis was continued until a steady-state 
had been reached. This was taken to be the cycle (indicated by an f in 
Tables 2-4) after which there was no change in the time lag within the 
accuracy of measurement and in which the maximum voltage amplitude 
differed by less than 0.1 ~o (or 0.01 ~ in Table 4) from its value in the cycle 
following. 

A. Computed Impedance Data for a Small 0.01 gA- cm -2 Sinusoidal 

Current Input for the Model Muscle Fiber 

Table 2 summarizes the basic results. The time lag of the voltage curve 
behind the current curve is measured at the peak values of the voltage in 
both the hyperpolarizing and depolarizing directions, and at the zero 
points following them. Similarly the voltage amplitude was measured at 
both the peak of the hyperpolarizing and depolarizing cycles. 

The phase angle q5 was calculated from the average time lag, At (given 
in Table 2) by using the relationship 

(o = (~ A t = 2 ~ f A t (radians) = 360 f A t  o (10) 
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Table 2. Computed impedance data for a typical frog muscle model fiber with a very small 
sinusoidal current input (amplitude 0.01 gA- cm z) 

Frequency Cycle 
of current No? 
(Hz) 

Time lag (see) Peak voltage (mV) 

Avr. b Max. diff. c Avr. a Max. diff. ~ 

0.01 i f  0.255 0.001 0.159 0.001 
0.05 2 f  0.239 0.001 0.156 0.001 
0.1 2 f  0.198 0.001 0.149 0.001 
0.2 2 f  0.119 0.001 0.135 0,00 l 
0.4 4 f  0.046 0.001 0:124 0.001 
0.5 4 f  0.032 0.001 0.122 0.001 
1.0 7 f  0.009 0.000 0.119 0.001 
5.0 14f 0.0004 0.0001 0.117 0.001 

10.0 20f 0.0001 0.0000 0.117 0.001 

a The f after the cycle number indicates that a steady-state had been reached (i.e., no change 
in the time lags within the accuracy specified and the maximum voltage amplitude within 
0.1 ~ of its value in the next few cycles following). 
b This column presents the average of the four time lag computations within the cycle- the  
lag of the hyperpolarizing and depolarizing peak voltages and the two zero voltages behind 
the equivalent points in the current cycle, 
c This column represents the maximum difference from the average of the time lags (rather 
than the SEN) of the voltage behind the sinusoidal current input in order to emphasize the 
lack of distortion of the voltage trace. 
a This column represents the average between the peak voltages in the hyperpolarizing and 
depolarizing phases of the cycle, respectively. 

This column represents the maximum difference between the average peak value and the 
peak hyperpolarizing and depolarizing parts of the cycle. 
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Fig. 4. The predicted phase angle between sinusoidal current and voltage, at different fre- 
quencies, due solely to transport number effects. This negative phase angle, representing the 
lag of the voltage behind the current, was computed from data for a frog muscle model fiber 
using the numerical analysis discussed in the text for a peak current of 0.01 gA. cm- 2. Note 

the logarithmic frequency scale in this figure and in Figs. 5-6 and 8-11 
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and the phase angle is shown plotted as a function of frequency in Fig. 4. 

There is no significant change in the time lag (Table 2) and hence in the 

phase lag throughout  the cycle. The curve is a fairly symmetrical bell- 

shaped curve with a maximum phase angle of about - 8 . 5  ~ occurring at 
about 0.2 Hz. The phase angle drops to just less than - 1 ~ above 5 Hz and 
below 0.01 Hz. 

Following the RC electrical circuit analogue (a sinusoidal current into 
a resistance and capacitance in parallel) the equivalent dynamic membrane 
resistance Rm, was calculated from the impedance, Zm (average peak 
voltage/0.01 gA, obtained from Table 2) and the phase angle, ~b, obtained 
from Table 2 by using Eq. (10) and the relationships 

where 

Rm=Z,~'(1 +(a~r)2) ~ 

tan q~=c~ 

and r, the time constant, may be defined by 

(11) 

(12) 

z = R ~  Cm. (13) 

Fig. 5 illustrates how in spite of this correction the dynamic membrane  
resistance is still dependent on frequency, being constant and approxi- 
mately equal to the actual membrane slope resistance R*, of 11.7 kf~. cmz 
(with no transport number  effects present; see Table 1) for frequencies 

higher than about 5.0 Hz, and increasing in magnitude as the frequency 
decreased, reaching a maximum value of about 16 kf l .  cm 2 at 0.01 Hz. 
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Fig. 5. The predicted equivalent dynamic membrane resistance, for sinusoidal currents of 
different frequencies, due to transport number effects. These points were calculated from the 
phase angle data (Fig. 4) and peak values of membrane current and voltage given in Table 2 
as discussed in the text. R* represents the instantaneous membrane slope resistance (clV/dI 
= 11.72 k~2.cm 2) without transport number effects. The conditions, as in Fig. 4, were for 

a peak current of 0.01 gA.cm -2 
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Fig. 6. The predicted equivalent capacitance ('capacitance'), for sinusoidal currents of different 
frequencies, due solely to transport number effects. These points were calculated from the 
phase angle data (Fig. 4) and the equivalent dynamic membrane resistance (Fig. 5). The 

conditions, as in Figs. 4 and 5, were for a peak current of 0.01 gA. cm -2 

From these values of R,, and ~b the equivalent capacitance, C,,, was 
calculated using Eqs. (12) and (13), and is shown in Fig. 6 plotted as a 
function of frequency. It may be seen from the figure that C,, is less than 
1 gF .  cm -2 for frequencies greater than 1.0 Hz but that it rises sharply 
and levels off to a value of almost 16 gF- cm -2 for frequencies less than 
about 0.05 Hz. 

B. Computed Impedance Data for a 0.01 gA.  cm-2  Sinusoidal Current 
Superimposed on 2,25 gA.  cm-2  Rectangular Depolarizing 

and HyperpoIarizing Pulses 

In this set of computations very long rectangular hyperpolarizing 
(12 sec) and depolarizing (10 sec) current pre-pulses were used, so that the 
initial transient response to the rectangular pre-pulse had died away 
before the small sinusoidal component  of current was superimposed on it 
as shown in Fig. 7. The anomalous rectification was illustrated by the fact 
that changes in potential at the end of the rectangular pre-pulse were - 2 2  
and + 46 mV for the hyperpolarizing and depolarizing pulses, respectively. 
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Fig. 7. The transient voltage response, during the long (e.g., 10 sec) 2.25 gA.  cm -2 rectangular 
hyperpolarizing and depolarizing current pre-pulses due to transport number effects. These 
curves were computed using the model fiber parameters, the calculations being the ones 
used to obtain the starting conditions at time t = 0  for the impedance analysis, The thicker 
dotted lines represent the small (0.01 pA.  cm -2) superimposed sinusoidal current and re- 
sultant voltage traces starting at time t = 0 at the end of the 10 sec pre-pulse used for the analysis. 
I represents the membrane current and V the resulting change in voltage across the muscle 
membrane. (A) represents the depolarizing current and voltage response and (B) the hyper- 
polarizing current and voltage response. Note the breaks in the time scale of the pre-pulses 
which were put in for diagrammatic purposes only. The diagram thus clearly emphasizes 
that a steady-state has been reached as far as each voltage response is concerned and also 
shows the anomalous rectification thai has been included in the analysis; illustrated by the 
fact that change in voltage in the depolarizing direction is approximately double that in the 

hyperpolarizing direction 
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Table 3. Computed impedance data for a typical frog muscle model fiber with a very small 
sinusoidal current (amplitude 0.01 btA.cm -2) superimposed (A) on a long rectangular 
hyperpolarizing pulse (2.25 btA- cm-2 amplitude) and (B) on a long rectangular depolarizing 

pulse ( - 2.25 gA.  cm- 2 amplitude) 

Frequency Cycle 
of current No. 
(nz) 

Time lag (sec) Peak voltage changea(mV) 

Avr. Max. diff. Avr. Max. diff. 

(A) Hyperpolarizing pulse 
0.01 I f  0.193 0.001 0.0708 0.0001 
0.05 1 f O. 189 0.001 0.0702 0.0001 
0.1 2 f  0.177 0.001 0.0685 0.0000 
0.2 2 f  O. 142 0.000 0.0637 0.0000 
0.5 4 f  0.061 0.001 0,0537 0.0001 
1.0 4 f  0.0207 0.0001 0.0491 0.0001 
5.0 15f 0.0010 0.0001 0.0468 0.0001 

10.0 lOf 0.0003 0.0001 0.0467 0.0001 

(B) Depolarizing pulse 
0,01 i f  0.151 0.015 0.0627 0.0001 
0.05 2 f  0.141 0.003 0.0620 0.0001 
O. 1 2 f  O. 118 0,002 0.0604 0.0001 
0.2 2 f  0.072 0.001 0.0572 0.0001 
0.5 4 f  0.020 0.001 0.0536 0.0001 
1.0 5f  0.0061 0.0002 0.0526 0.0001 
5.0 2 i f  0.0003 0.0001 0.0520 0.0001 

10.0 6 f  0.00005 0.00005 0.0520 0.0002 

a The layout and terminology used is the same as for Table 2 except that in column 5 the 
peak voltage change is used instead of the peak voltage in the former table, 

The phase angles, q~, were calculated, as before, in both cases from the 
time lag data in Table 3 and are shown in Fig. 8 as a function of frequency. 
In comparison to the situation in the previous section (A): for the response 
during the hyperpolarizing pulse, the maximum phase angle was slightly 
larger (about -11.6 ~ and occurred at a higher frequency (0.35 Hz); 
whereas for the depolarizing pulse response, although the maximum 
phase angle was smaller (about -5.2~ it did occur at the same frequency 
as before (0.2 Hz). 

Fig. 9 illustrates the equivalent dynamic membrane resistance, Rm, 
calculated as before (using Eqs. (10) and (11) from the impedance Z,~, 
calculated as A V/0.01 btA, A V being obtained from Table 3). R m is still very 
dependent on frequency for both hyperpolarizing and depolarizing pulses. 
In the hyperpolarizing case R,, is constant and approximately equal to 
the instantaneous membrane slope resistance R~(AV/I=4.7 kf~. cm 2 at 
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Fig. 8. The predicted phase angle between sinusoidal and voltage, at different frequencies, 
due solely to transport number effects. This negative phase angle was computed from data 
for a frog muscle fiber as in Fig. 4, but in this case for a small 0.01 ~tA. cm 2 sinusoidal 
component of current superimposed on rectangular 2.25gA.cm -2 hyperpolarizing and 
depolarizing pulses in the manner illustrated in Fig. 7. The filled circles (with the solid line) 
represent the response for the hyperpolarizing pulse and the open circles (with dashed line) 

represent the response for the depolarizing pulse 
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Fig. 9. The predicted equivalent dynamic membrane resistance, for sinusoidal currents of 
different frequencies, due to transport number effects. As in Fig. 5, the points were calculated 
from the phase angle data (Fig. 8) and peak values of membrane current and voltage (Table 3) 
as discussed in the text. R *h and R *~ represent the instantaneous membrane slope resistance 
(dV/dI) at the end of the constant rectangular hyperpolarizing and depolarizing pre-pulses, 
respectively. Again the filled circles (with the solid line) and the open circles (with the dashed 
line) represent the dynamic resistances during the 2.25 gA- cm- z rectangular hyperpolarizing 

and depolarizing pulses, respectively 
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Fig. 10. The predicted equivalent capacitance ('capacitance'), for sinusoidal currents of 
different frequencies, due solely to transport number effects. As in Fig. 6 the points were cal- 
culated from the phase angle data (Fig. 8) and the equivalent dynamic membrane resistance 
(Fig. 9). Again the filled circles (with the solid line) and the open circles (with the dashed line) 
represent the equivalent capacitance during the 2.25 gA. cm -2 rectangular hyperpolarizing 

and depolarizing pulses, respectively 

the end of the rectangular hyperpolarizing current pulse by itself. (See 
Table 1 - n o  further transport  number  e f f e c t s - f o r  frequencies above 
1.0 Hz.) It increased in magnitude, however, as the frequency decreased, 
reaching a maximum of 7 kf~cm 2 at very low frequencies (i.e., less than 
0.1 Hz). 

However, although the depolarizing pulse curve followed the shape 
of the hyperpolarizing one, the relative change in dynamic resistance as 
the frequency decreased was rather less. At frequencies greater than 
1.0 Hz the dynamic resistance was again constant and equal to a slightly 
higher instantaneous membrane slope resistance R~(dV/dI=5.2kf~cm 2 
at the end of the rectangular depolarizing pulse by itself; Table 1 - w i t h  
no further transport number effects) whereas at frequencies less than 
0.1 Hz it had risen to a steady maximum value of just over 6 kf~cm 2. In 
spite of the large difference in dc resistance of the membrane in both cases 
(e.g., 6.6:9.7, Table 1 and Fig. 7) it should be noted that the instantaneous 
slope resistance and the dynamic membrane resistances Rm, are remarkably 
similar for the two pulses. 

There is now also an even greater equivalent capacitance than before 
(cp. Figs. 10 and 6) for both pulses, as is illustrated in Fig. 10. This was 
calculated as in section A, from the data of Table 3 by using Eqs. (11)--(13). 
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For  the hyperpolar iz ing  pulse the equivalent  capacitance,  C,n, is less than  

1 p F .  cm -2 for frequencies greater than  3 Hz. Again C,, rises sharply as 

in Fig. 6 as the frequency is decreased, but  now it rises to a m a x i m u m  

steady value of about  27 g F .  c m - 2  below about  0.05 Hz. The depolarizing 

pulse curve follows the same trend though  it is shifted slightly to the left. 

C,, is less than  1 p F .  cm -2 for frequencies greater than 1.2 Hz and also 

rises sharply at slightly lower frequencies to a m a x i m u m  steady value of 

abou t  24 p F .  c m -  2 below abou t  0.02 Hz. 

C. Computed Impedance Data for a Large 2.25 p A .  cm -2 Sinusoidal 
Current Input for the Model Muscle Fiber 

The computa t ions  are similar to those a l ready discussed in section A. 

However ,  the large current  means  that  the rectification characteristics are 

very significant and  will give rise to considerable  dis tor t ion of the voltage 

waveform from a pure sine wave. This means,  as is indicated in Table 4, 

that  (1) the peak voltage for the hyperpolar iz ing part  of the cycle is very 

much  less than  that  for the depolar iz ing part,  and (2) there is a considerable 

Table 4. Computed impedance data for a typical frog muscle model fiber with a sinusoidal 
current input of very large magnitude (amplitude 2.25 gA. cm- 2) 

Frequency Cycle Time lag of voltage b (sec) Peak voltage c 
of current No. a (mV) 
(Hz) 

0.01 i f  0.194 0.232 0.152 0.288 21.87 45.64 
0.05 2f  0.210 0.174 0.164 0.277 21.72 45.45 
0.1 2f  0.244 0.132 0.166 0.220 21.09 44.92 
0.2 2f  0.2ll 0.082 0.133 0.131 19.14 43.66 
0.5 4f  0.0741 0 .0263  0 .0555  0.0349 16.25 41.61 
1.0 7f  0.0223 0 .0081  0 .0188  0.0095 15.35 40.81 
5.0 20f 0.0010 0 .0003  0 .0009  0.0003 14.96 40.44 

10.0 25f 0.00025 0.00009 0.00022 0.00009 14.95 40.42 

aNn f following the cycle number indicates that a steady-state had been reached (i.e., 
no change in the time lag within the accuracy specified and maximum voltage amplitude 
within 0.01 ~ of its value in the cycle following). 
b h d Atm, At m refer to the time lag at the peak of the hyperpolarizing and depolarizing voltages, 
respectively. 
A to h, A ~ refer to the time lag of the zero voltage following the hyperpolarizing and depolarizing 
parts of the cycle, respectively. 
~ V~ and V a refer to the peak values of the voltage in the hyperpolarizing and depolarizing 
directions, respectively. 
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Fig. 11. The predicted phase angle between sinusoidal current and voltage at different fre- 
quencies due solely to transport number effects. As in Fig, 4 this was computed from data 
for a frog muscle model fiber using the numerical analysis discussed in the text. In this case, 
however, a very large sinusoidal current (peak amplitude=2.25 gA-cm -z) was used by 
itself. The filled circles (with the solid line) and the filled triangles (with the dotted line) rep- 
resent the phase lags measured from the peak values of current in the hyperpolarizing and 
depolarizing parts of the cycle, respectively, whereas the open circles (with dotted-dashed 
line) and the open triangles (with the dashed line) represent the phase lags measured from the 
zero values of current at the end of the hyperpolarizing and depolarizing phases of the cycle, 
respectively. The difference between the 4 curves is due mainly to the anomalous rectification 

included in the analysis 

change in the t ime lag t h r o u g h o u t  the cycle. The  phase  lags for the two 

peaks were calculated as before f rom the app rop r i a t e  t ime lags and are 

shown in Fig. 11 as a funct ion of frequency.  These  phase lags are in fact 

larger than  those ob ta ined  previously  (cf. Figs. 4 and 8). However ,  all tha t  

can really be said is that  they are capaci ta t ive  in nature,  since the effect 

appears  to be equivalent  to tha t  p r o d u c e d  by an a n o m a l o u s  capac i tance  
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that varies somewhat throughout  the cycle. From the time lags and 
impedances computed at the two peaks, one could try to calculate some 
sort of apparent equivalent capacitance. For example, at 0.1 Hz such a 
calculation would lead to values of about 26 laF. c m  - 2  and 8 ~F.  c m  - 2  

for the peak parts of the hyperpolarizing and depolarizing phases of the 
cycle, respectively. The considerable amount  of sine wave distortion, 
indicated by the difference in these two values and in the sets of time lag 
values given in Table 4, really makes the validity of such calculations from 
a straightforward analysis of time lags extremely dubious and thus will 
not be pursued. 

Discussion 

This paper first of all considers experimental results (see Paper I) on 
sartorius muscle fibers in which transport number effects have been 
shown to cause a slow transient decrease in resistance during rectangular 
current and voltage clamped pulses. The same basic numerical model and 
the model fiber parameters that represented the average measurements 
for a number of fibers in the former paper were used in this paper and it 
was shown how the model (with some modifications to accept a sinusoidal 
input) could be used to predict the response of the same model fiber to a 
sinusoidal current input. 

It was then shown that these transport number effects give rise to a 
very significant phase lag of the voltage response (i.e., negative phase 
angle) behind the current, especially at frequencies below 1 Hz. Such a 
phase lag mimics the effect of a very large capacitance and an additional 
component  of resistance and might be mistaken for such if the role of 
transport numbers were not appreciated. The way in which such frequency- 
dependent transport number equivalent parameters would combine with 
the normal capacitance and resistance is shown in Fig. 12 for a modification 
of the simple lumped equivalent circuit of a muscle fiber. At frequencies 
greater than 10 Hz, or in the absence of transport number effects, the 
equivalent transport number capacitance, CrN, and resistance, Rru,  
would both reduce to zero, and the circuit would reduce to the normal 
simple lumped equivalent circuit, 4 whereas below 1 Hz they would both 
become very significant. 

4 Of course, in order to accurately describe a normal muscle fiber at frequencies greater 
than about 10Hz, a more complicated equivalent circuit-a Hybrid or Disk model (e.g., 
Valdiosera, Clausen & Eisenberg, 1974a, b)-should be used which correctly allows for the 
electrical properties of the transverse tubular system. 
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Fig. 12. An equivalent circuit based on the simple lumped model for a muscle fiber showing 
how the frequency-dependent transport number equivalent capacitance, CrN , and resistance, 
RrN, combine with the normal membrane capacitance Cm, and membrane resistance, R,,. 
R i represents the internal resistance of the fiber which would become relevant in the cable 
clamp situation. Parameters are referred to unit area of fiber. At frequencies greater than 

10 Hz, or in the absence of transport number effects, Crt~ and RrN both reduce to zero 

In order to ensure minimal distortion of the sinusoidal nature of the 
voltage response because of the presence of anomalous rectification in 
muscle (e.g., Adrian & Freygang, 1962), it was necessary to use only a very 
small amplitude (e.g., 0.01 gA.  cm-2) sinusoidal component  of current. 
By itself this small amplitude current when injected into the muscle fiber 
illustrated that transport number effects were equivalent to a capacitance 
(CrN) which increased from less than 1 p F - c m  -2 at 10Hz to about 
16 gF .  cm -2 at 0.01 Hz (as in Fig. 6) and to an equivalent dynamic 
membrane resistance which increased from its instantaneous slope value 
of 11.7 kf2cm 2 at 10 Hz to about 16 kf~cm 2 at very low frequencies (as in 
Fig. 5, with RrN correspondingly increasing therefore from zero to about 
4.3 kf~cm2). 

Furthermore in order to investigate equivalent capacitance effects 
during reasonably large, rectangular, hyperpolarizing and depolarizing 
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pulses, the small amplitude sinusoidal component  was superimposed on 
rectangular pulses after the initial transient response to the pre-pulse had 
settled down (e.g., s e e  Fig. 7). In the case of both 2.25 gA.  cm -2 pulses, 
transport number effects gave rise to an equivalent capacitance (CrN) 
which was less than 1 gF �9 cm -2 at 10 Hz, but then rose to a large maximum 
steady value of about 28 ~tF. cm -2 for the hyperpolarizing pulse and 
2 4 g F .  cm -2 for the depolarizing pulse at 0.01 Hz (as in Fig. 10). The 
equivalent dynamic resistances also increased from their instantaneous 
slope values of 4.7 kflcm -2 at 10 Hz to about 7.1 kt icm 2 and 6.3 kglcm 2 
(with RrN correspondingly increasing therefore from zero to about 
2 .4kf lcm 2 and 1.6kflcm 2) for the hyperpolarizing and depolarizing 
pulses respectively at 0.01 Hz. 

The effect of a large amplitude sinusoidal current (2.25 ~tA. cm-  2) by 
itself was also investigated. However, apart from the observation that 
transport number effects were causing large negative phase lags (Fig. 11) 
of the voltage response with respect to the current which implied that the 
effects were of a "capacitative" nature, particularly at very low frequencies, 
the distortion of the voltage waveform-resul t ing  from the rectification 
character is t ics-made any sort of an estimate of equivalent capacitance 
from a straightforward analysis of such phase lags quite invalid. 

One of the more general predictions of this paper is the presence of a 
negative phase lag which in all cases considered was greater than 2 ~ 
between 0.04 to 1.2 Hz and rose to a maximum value of 11.6 ~ at about 
0.35 Hz in the case of the small sinusoidal component  superimposed on a 
2.25 gA.  cm -2 rectangular hyperpolarizing current pulse. For example, 
at a frequency of 1 Hz, the lower limit of many impedance analysis studies, 
the values of phase lags varied between - 2 . 2  ~ and -7 .5  ~ for the three 
cases studied by use of the small sinusoidal current component, and 
between -2 .9  ~ and - 8 . 0  ~ for the case of the large amplitude sinusoidal 
current by itself (e.g., Fig. 11). In order to compare such predictions with 
experimental studies it should, of course, be pointed out that this analysis 
corresponds to a space clamp situation with the current density constant 
along the length of the fiber (as is approximated at the end of the fiber in 
the 3-electrode clamp arrangement, e.g., Adrian, Chandler & Hodgkin, 
1970a) and gives larger phase angles than the corresponding cable clamp 
with a point source injection of current. In fact, for a conventional RC 
circuit under space clamp conditions, the phase angle q5 s is given by: 

q~s--= tan -1 o J z  
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where co is the frequency of the current in radian x sec- ~ and -c the time 
constant is given by: 

= R,, C m . 

On the other hand, for a cable clamp the phase angle q~c is given (e.g., 
Tasaki & Hagiwara, 1957) by: 

~bc = t a n - *  [{(1 + (co'c)2)~- 1}/{(1 + (co-c)2)�89 + 1}] 3 

- ~ t a n - l [ ~ ( 1 - ( c o - c / 2 ) 2 ) ]  as ( o r ~ l  

and so qSc~-~b~/2 provided co-c~ 1 (e.g., if ~bs= 16 ~ c0~=0.287, q~-~7.99~ 
If the same sort of relationship is assumed between space and cable 

clamps for the component  of phase angle resulting from transport number  
effects then, for example, even at 1 Hz one would predict an average 

negative phase angle of about 5 ~ in the space clamp situation and about 
2.5 ~ in the cable clamp situation. This effect is maximum in a sulphate 
Ringer's solution and would be smaller in a chloride Ringer's solution. 
Nevertheless such negative phase angles seem to correspond reasonably 
well with the 2 ~ deviation of experimental from expected values (the 
theoretical expected values being calculated from a number of equivalent 
circuits) obtained by Valdiosera, Clausen and Eisenberg (1974 b, e.g., Fig. 2 

of their paper) and would help to explain the discrepancy in their measure- 
ments on normal fibers at such low frequencies. It should also be empha- 
sized, in support of this explanation for such a low frequency deviation, 
that Valdiosera et al. also found that the deviation decreased markedly in 
glycerol treated fibers (i.e., fibers with most of the transverse tubular 
system nonfunctional) and in otherwise normal  fibers in which the 
resistance in series with the tubular system was strikingly high. 

Probably the most important  implication of the paper is, therefore, 
that a consideration of such transport number  effects as outlined in this 
paper is critical for interpretation of any impedance studies carried out on 
skeletal muscle at very low frequencies, particularly at frequencies less 
than 1 Hz. 
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